• <input id="4g248"><object id="4g248"></object></input>
    立即打開
    霍尼韋爾宣布研發出最新量子計算技術

    霍尼韋爾宣布研發出最新量子計算技術

    Jeremy Kahn 2021年07月22日
    這種情況表明,霍尼韋爾已經在一定程度上成為新興量子計算領域的領導者。

    工業巨頭霍尼韋爾和其最近收購的一家英國軟件公司——劍橋量子計算(Cambridge Quantum Computing)宣布在量子計算性能方面實現了三次大飛躍。

    這些聲明旨在表明,霍尼韋爾已經在一定程度上成為新興量子計算領域的領導者,而該領域此前一直由谷歌和IBM等消費者更為熟悉的大型科技公司主導?;裟犴f爾的量子計算機能夠通過微軟的Azure云計算平臺訪問,不過微軟也在研發自家量子計算硬件,只是還沒有完善。據報道,亞馬遜也正在組建團隊,以建造自研量子硬件。

    此外,7月21日的這份聲明還意在展示霍尼韋爾的量子部門與劍橋量子計算的合并前景。前者專注于量子硬件,后者則專注于量子計算機的軟件。今年6月,兩家公司宣布合并,合并后的公司將從霍尼韋爾剝離出來,成為一家獨立的公司。

    霍尼韋爾將仍然持有新公司55%的股權并將有權使用其技術,但新公司將有能力從外部尋求更多的資金。

    實時校正

    霍尼韋爾的量子計算部門——霍尼韋爾量子解決方案的研究人員證明,計算機可以實時糾正目前量子計算機在計算中可能出現的錯誤,并且在錯誤出現時發現和糾正。這是對先前技術的一個改進,在以前,這些錯誤只能夠在計算完成后才被發現和校正,而這可能會導致處理時間更長。

    計算中出現的錯誤是目前阻礙量子計算在現實世界應用的因素之一?;裟犴f爾將10個物理量子位(量子計算機中執行計算的部分)中的7個組合在一起,形成了一個計算單元,即所謂的“邏輯量子位”,從而實現了實時誤差校正。

    “大型企業級問題需要精確以及錯誤修正的邏輯量子位元來校正和縮小?!被裟犴f爾量子解決方案的負責人托尼?阿特利在一份聲明中說。

    霍尼韋爾還表示,公司目前已經實現了1024個量子體積,這是今年3月公布的紀錄的兩倍。量子體積是一種考慮了幾個不同變量的性能刻度。去年10月,初創公司IonQ推出了一款量子計算機,采用了與霍尼韋爾類似的底層捕獲離子技術,據稱其“預計量子體積”達到了400萬。IonQ還表示,其認為IBM在2016年首次發布的這個基準指標可能無法持續很久,因為底層硬件類型之間存在差異。

    以少抵多

    這份聲明的最后,劍橋量子計算宣布,他們在算法上取得了進展,可以用較少的量子位(量子計算機的邏輯處理部分)來解決復雜的優化問題。今天的量子計算機通常只有幾十個這樣的量子位,而與之相比,在今天的標準計算機芯片上有數十億個開關——所以能夠用更少的量子位做更多的事情,對現實世界的應用來說相當重要。同時,這些優化問題也往往在商業世界的“數學題”中涌現,比如快遞員送貨的最優路線、金融投資組合中平衡風險和收益的最優方式、工廠設備的最高效運行方式,以及減少維護性停工的最好辦法等等。

    這家初創公司認為,新的辦法可以將解決部分復雜優化問題的時間縮短到原來的100倍?!案斓牧孔铀惴軌驅γ媾R復雜優化問題的各行各業產生深遠的影響?!眲蛄孔佑嬎愕膭撌既思笆紫瘓绦泄僖晾麃喫?汗在一份新聞稿中說。他還提及了鋼鐵制造這一領域,量子算法可以讓制造工藝更高效、更節省成本。

    同時,量子計算正在穩步進軍商業應用領域。從高盛到博世,數十家公司已經建立了依賴通過云計算平臺訪問量子計算機的試點項目。還有更多的公司在使用受量子計算技術啟發的算法,但這些算法仍然在標準硬件上運行。

    量子計算機利用量子物理中的現象來進行計算。例如,在標準計算機中,信息是由一個名為“位”的二進制單位表示的,這個二進制單位只能夠是0或者1;而在量子計算機中,信息由一個量子位表示,這個量子位可以同時是0和1。在標準計算機中,每一位是獨立于其他每一位的;而在量子計算機中,每個量子位的狀態可能會影響其他量子位的狀態。這兩種特性被稱為疊加和糾纏,因此從理論上講,量子計算機比現有的數字計算機(計算機科學家通常稱其為“經典計算機”)具有指數級的處理能力。

    此外還有其他不同之處:今天的數字計算機幾乎都在由半導體構成的類似邏輯電路上運行,而量子計算機中的量子位能夠通過多種不同的方式工作。比如,IBM和谷歌的量子計算機通過在極低溫度下使用超導材料創建電路來工作;微軟一直在嘗試用超導和半導體材料相結合的量子位創造量子計算機;霍尼韋爾的計算機則采用了一種完全不同的方法,即依靠向材料發射激光來捕獲離子。

    目前的問題是,很難讓量子位長時間處于量子狀態,對捕獲的離子量子位來說,最多只可以持續一分鐘,而對于大多數其他超導電路來說,只有幾分之一秒。當這些量子位脫離量子狀態時,錯誤就會在計算中堆積起來。這些錯誤的存在,以及研究人員還沒有弄清楚如何制造出量子位數量接近標準數字計算機邏輯門數量的芯片這一問題,意味著在大多數情況下,今天的量子計算機仍然不如大多數筆記本電腦高效、有用。這是正確的,除了一小部分非常困難的問題(許多問題與量子物理本身有關)之外,量子計算機是得到答案的唯一可證明的方法。(財富中文網)

    編譯:楊二一

    工業巨頭霍尼韋爾和其最近收購的一家英國軟件公司——劍橋量子計算(Cambridge Quantum Computing)宣布在量子計算性能方面實現了三次大飛躍。

    這些聲明旨在表明,霍尼韋爾已經在一定程度上成為新興量子計算領域的領導者,而該領域此前一直由谷歌和IBM等消費者更為熟悉的大型科技公司主導?;裟犴f爾的量子計算機能夠通過微軟的Azure云計算平臺訪問,不過微軟也在研發自家量子計算硬件,只是還沒有完善。據報道,亞馬遜也正在組建團隊,以建造自研量子硬件。

    此外,7月21日的這份聲明還意在展示霍尼韋爾的量子部門與劍橋量子計算的合并前景。前者專注于量子硬件,后者則專注于量子計算機的軟件。今年6月,兩家公司宣布合并,合并后的公司將從霍尼韋爾剝離出來,成為一家獨立的公司。

    霍尼韋爾將仍然持有新公司55%的股權并將有權使用其技術,但新公司將有能力從外部尋求更多的資金。

    實時校正

    霍尼韋爾的量子計算部門——霍尼韋爾量子解決方案的研究人員證明,計算機可以實時糾正目前量子計算機在計算中可能出現的錯誤,并且在錯誤出現時發現和糾正。這是對先前技術的一個改進,在以前,這些錯誤只能夠在計算完成后才被發現和校正,而這可能會導致處理時間更長。

    計算中出現的錯誤是目前阻礙量子計算在現實世界應用的因素之一?;裟犴f爾將10個物理量子位(量子計算機中執行計算的部分)中的7個組合在一起,形成了一個計算單元,即所謂的“邏輯量子位”,從而實現了實時誤差校正。

    “大型企業級問題需要精確以及錯誤修正的邏輯量子位元來校正和縮小?!被裟犴f爾量子解決方案的負責人托尼?阿特利在一份聲明中說。

    霍尼韋爾還表示,公司目前已經實現了1024個量子體積,這是今年3月公布的紀錄的兩倍。量子體積是一種考慮了幾個不同變量的性能刻度。去年10月,初創公司IonQ推出了一款量子計算機,采用了與霍尼韋爾類似的底層捕獲離子技術,據稱其“預計量子體積”達到了400萬。IonQ還表示,其認為IBM在2016年首次發布的這個基準指標可能無法持續很久,因為底層硬件類型之間存在差異。

    以少抵多

    這份聲明的最后,劍橋量子計算宣布,他們在算法上取得了進展,可以用較少的量子位(量子計算機的邏輯處理部分)來解決復雜的優化問題。今天的量子計算機通常只有幾十個這樣的量子位,而與之相比,在今天的標準計算機芯片上有數十億個開關——所以能夠用更少的量子位做更多的事情,對現實世界的應用來說相當重要。同時,這些優化問題也往往在商業世界的“數學題”中涌現,比如快遞員送貨的最優路線、金融投資組合中平衡風險和收益的最優方式、工廠設備的最高效運行方式,以及減少維護性停工的最好辦法等等。

    這家初創公司認為,新的辦法可以將解決部分復雜優化問題的時間縮短到原來的100倍?!案斓牧孔铀惴軌驅γ媾R復雜優化問題的各行各業產生深遠的影響?!眲蛄孔佑嬎愕膭撌既思笆紫瘓绦泄僖晾麃喫?汗在一份新聞稿中說。他還提及了鋼鐵制造這一領域,量子算法可以讓制造工藝更高效、更節省成本。

    同時,量子計算正在穩步進軍商業應用領域。從高盛到博世,數十家公司已經建立了依賴通過云計算平臺訪問量子計算機的試點項目。還有更多的公司在使用受量子計算技術啟發的算法,但這些算法仍然在標準硬件上運行。

    量子計算機利用量子物理中的現象來進行計算。例如,在標準計算機中,信息是由一個名為“位”的二進制單位表示的,這個二進制單位只能夠是0或者1;而在量子計算機中,信息由一個量子位表示,這個量子位可以同時是0和1。在標準計算機中,每一位是獨立于其他每一位的;而在量子計算機中,每個量子位的狀態可能會影響其他量子位的狀態。這兩種特性被稱為疊加和糾纏,因此從理論上講,量子計算機比現有的數字計算機(計算機科學家通常稱其為“經典計算機”)具有指數級的處理能力。

    此外還有其他不同之處:今天的數字計算機幾乎都在由半導體構成的類似邏輯電路上運行,而量子計算機中的量子位能夠通過多種不同的方式工作。比如,IBM和谷歌的量子計算機通過在極低溫度下使用超導材料創建電路來工作;微軟一直在嘗試用超導和半導體材料相結合的量子位創造量子計算機;霍尼韋爾的計算機則采用了一種完全不同的方法,即依靠向材料發射激光來捕獲離子。

    目前的問題是,很難讓量子位長時間處于量子狀態,對捕獲的離子量子位來說,最多只可以持續一分鐘,而對于大多數其他超導電路來說,只有幾分之一秒。當這些量子位脫離量子狀態時,錯誤就會在計算中堆積起來。這些錯誤的存在,以及研究人員還沒有弄清楚如何制造出量子位數量接近標準數字計算機邏輯門數量的芯片這一問題,意味著在大多數情況下,今天的量子計算機仍然不如大多數筆記本電腦高效、有用。這是正確的,除了一小部分非常困難的問題(許多問題與量子物理本身有關)之外,量子計算機是得到答案的唯一可證明的方法。(財富中文網)

    編譯:楊二一

    Industrial giant Honeywell and Cambridge Quantum Computing, a British software company Honeywell recently acquired, have announced a trio of big leaps forward in quantum computing performance.

    The announcements were intended to show the extent to which Honeywell has emerged as a leader in the nascent quantum computing field, which has otherwise been dominated by big technology companies that are better known to consumers, such as Google and IBM. Honeywell’s quantum computer can be accessed through Microsoft’s Azure cloud-computing platform, although Microsoft has also been working on its own quantum computing hardware, which it has yet to perfect. Amazon is also reportedly assembling a team to build its own quantum hardware too.

    July 21's announcement was also meant to showcase the promise of the merger of Honeywell’s quantum division, which has focused on quantum hardware, with Cambridge Quantum Computing, which has focused on software for quantum computers. In June, the two companies announced the combination and that the merged company would be spun out from Honeywell as a stand-alone corporation.

    Honeywell will still own 55% of the new company and have the rights to use its technology, but the corporation will have the ability to raise additional outside financing.

    Real-time corrections

    Researchers at Honeywell Quantum Solutions, the company’s quantum computing division, demonstrated that it could correct in real time the errors that tend to creep into the calculations of today’s quantum computers, finding and correcting the mistakes as they occur. This is an advance on previous methods, in which such errors could only be spotted and corrected once a calculation had finished running, which made for potentially much slower processing times.

    Errors are one of the things that is currently holding back many real-world applications of quantum computing. Honeywell managed to achieve its real-time error correction by yoking together seven of the 10 physical qubits—the parts of a quantum computer that perform calculations—to form a single calculating unit, known as a “logical qubit.”

    “Big enterprise-level problems require precision and error-corrected logical qubits to scale successfully,” Tony Uttley, president of Honeywell Quantum Solutions, said in a statement.

    Honeywell also said it had achieved a quantum volume of 1,024, doubling its previous record announced just in March. Quantum volume is a measure of performance that takes into account several different variables. Startup IonQ unveiled a quantum computer using an underlying trapped-ion technology similar to Honeywell’s in October that it said had an “expected quantum volume” of 4 million. IonQ also said it thought the benchmark metric, which was first promulgated by IBM in 2016, might not be useful for much longer because of differences between underlying hardware types.

    More with less

    Finally, Cambridge Quantum Computing announced that it had made an algorithmic advance that makes it possible to solve complex optimization problems using few qubits, which are the logical processing parts of a quantum computer. Today’s quantum computers often have just a few dozen of these qubits, compared to the billions of switches in today’s standard computer chips, so being able to do more with a fewer number of qubits is important for real-world applications. Optimization problems are also the sort of mathematical problem that pop up frequently in business, whether it is trying to find the most efficient route for a delivery courier, the best way to balance risk and reward in a financial portfolio, or the best way to run factory equipment quickly and reduce maintenance stoppages.

    The startup said its methods could speed up the time it would take to solve some complex optimization problems by up to a factor of 100. “Faster quantum algorithms can have a profound impact on a variety of industries that face complicated optimization problems,” Ilyas Khan, the founder and chief executive officer of Cambridge Quantum Computing, said in a press release. He mentioned steel manufacturing as an area where quantum algorithms could help make manufacturing processes more efficient and cost-effective.

    Quantum computing is making steady inroads into commercial applications. Dozens of companies, from Goldman Sachs to Bosch, have set up pilot projects that rely on access to quantum computers accessed through cloud-computing platforms. More still are using algorithms inspired by quantum computing techniques, but which run on standard hardware.

    Quantum computers use phenomenon from quantum physics to make their calculations. For instance, while in a standard computer, information is represented by a binary unit called a bit, that can be either a 0 or 1. In a quantum computer, information is represented by a qubit, which can be both 0 and 1 at the same time. In a standard computer, each bit is also independent from every other bit. In a quantum computer, however, the state of every qubit can potentially influence the state of every other qubit. These two properties, which are called superposition and entanglement, theoretically give quantum computers exponentially more processing power than existing digital computers, which computer scientists often call “classical computers.”

    There are other differences as well: Today’s digital computers pretty much all run on similar logic circuits constructed from semiconductors. The qubits in quantum computers can be made in a wide variety of different ways: IBM’s and Google’s quantum machines work by creating circuits using superconducting materials at extremely low temperatures. Microsoft has been trying to create a quantum computer using qubits that marry superconducting and semiconducting materials. Honeywell’s machine uses an entirely different method that relies on firing lasers into a material to trap ions.

    The problem is that it is difficult to keep the qubits in a quantum state for long—one minute at most for a trapped ion qubit, just fractions of a second for most other superconducting circuits. And when these qubits fall out of a quantum state, errors pile up in their calculations. The presence of these errors and the fact that researchers have not yet figured out how to create chips with anywhere near the number of qubits as there are logical gates in a standard digital computer, mean that in most cases today’s quantum computers are still less powerful and less useful than even most laptops. This is true except for a small subset of very difficult problems—many related to quantum physics itself—where a quantum computer is the only provable way to arrive at a valid answer.

    最新:
    • 熱讀文章
    • 熱門視頻
    活動
    掃碼打開財富Plus App
    快3玩法绝招